	Acceptance Tests		Confirmation Tests				Pre-
	Test 7	Test 8	Test 9	<u>Test 10</u>	Average	Gaurantee	<u>Upgrade</u>
HP Turbine Efficiency (%)	92.85	92.83	92.72	92.80	92.80	92.20	83.48
HP TurbineWheel Power (Mw)	302.8	304.5	300.4	304.4	303.01	299.0	259.4
Throttle Flow (kpph)	7,079	7,084	7,063	7,070	7,074	6,900	6,412
IP Turbine Efficiency (%)	92.01	92.06	92.17	91.05	91.82		91.23
Net Turbine Cycle Heat Rate (Btu/kwh)	7,701	7,636	7,671	7,676	7,671	7,683	7,807
Gross Power (Mw)	989.4	989.5	987.8	988.2	988.7	973.2	875.3

Notes:

All tests conducted at turbine throttle valves wide-open.

Tests 7 & 8 conducted by PGT with test instrumentation. Refer to the Thermal Peerformance Test Results on Intermountain Power Project (IPP) Unit #2 Turbine Cycle test report (April 2002) for additional information.

Tests 9, 10 & upgrade tested using station instrumentation corrected to test instruments readings.

HP turbine efficiency - PGT test uncertainty ±0.346%, enthalpy drop efficiency calculated with inlet conditions measured before stop valves, exhaust measured after balance gland leakage flow mix.

HP turbine wheel power - PGT test uncertainty ±2.508%, throttle flow corrected to design conditions (2412.2 psia, 1000°).

Throttle flow - PGT test uncertainty ±2.510%, corrected to design throttle conditions (2412.2 psia, 1000°).

IP turbine efficiency - Enthalpy drop efficiency calculated with inlet conditions measured before combined reheat valves and exhaust measured at LP-A turbine inlet (PGT), 14th stage extraction (Station).

Net turbine cycle heat rate - PGT test uncertainty ±2.554%, test heat rate was adjusted to PGT test values and corrected to design throttle & reheat conditions, design turbine back-pressure, and contract cycle using station pepse model.

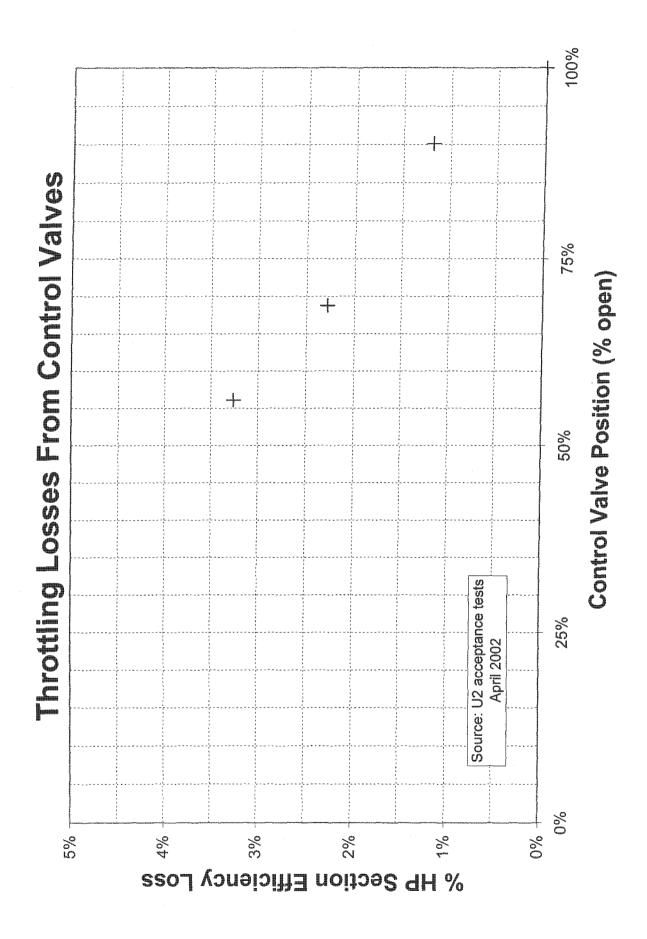
	Acceptano Test 7	<u>Test 8</u>	Confirmat Test 9	ion Tests Test 10	Average	Gaurantee	Pre- <u>Upgrade</u>
HP Turb ne Efficiency (%)	92.85	92.83	92.72	92.80	92.80	92.20	83.48
HP Turb neWheel Power (Mw)	302.8	304.5	300.4	304.4	303.01	299.0	259.4
Throttle Flow (kpph)	7,079	7,084	7,063	7,070	7,074	6,900	6,412
IP Turbine Efficiency (%)	92.01	92.06	92.17	91.05	91.82		91.23
Net Turbine Cycle Heat Rate (Btu/kwh)	7,701	7,636	7,671	7,676	7,671	7,683	7,807
Gross Power (Mw)	989.4	989.5	987.8	988.2	988.7	973.2	875.3

Notes:

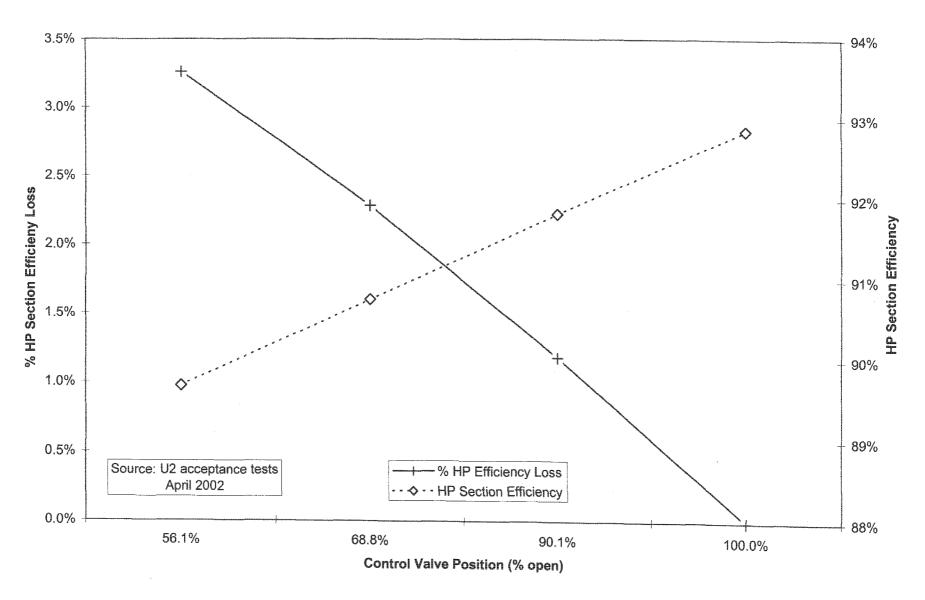
All tests conducted at turbine throttle valves wide-open.

Tests 7 & 8 conducted by PGT with test instrumentation. Refer to the Thermal Peerformance Test Results on Intermountain Power Project (IPP) Unit #2 Turbine Cycle test report (April 2002) for additional information.

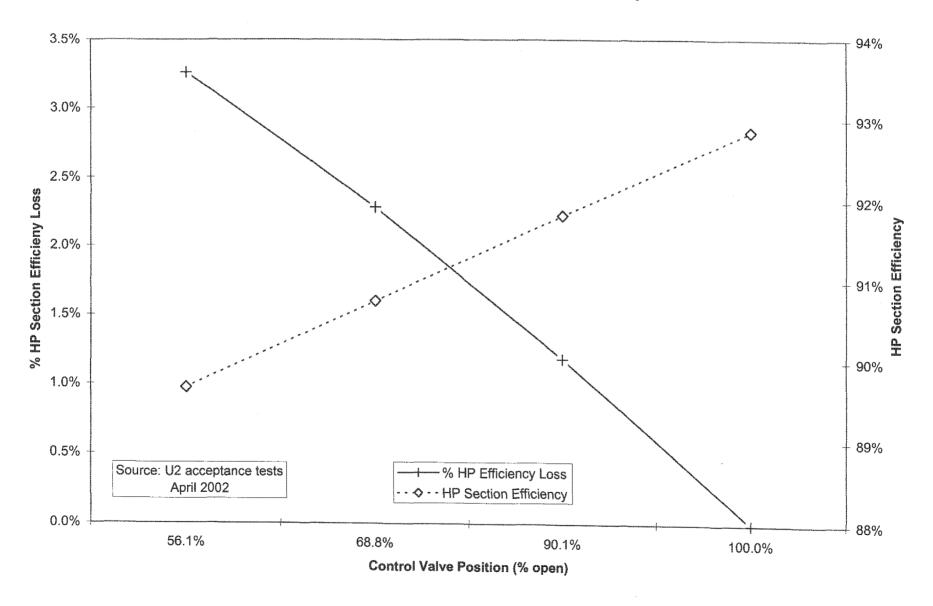
Tests 9, 10 & upgrade tested using station instrumentation corrected to test instruments readings.

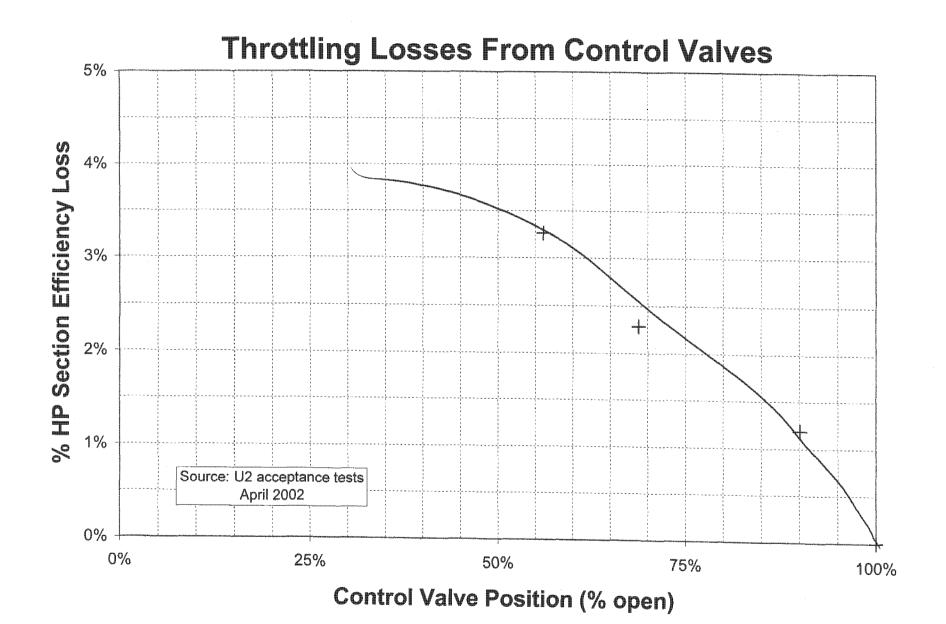

HP turbine efficiency - PGT test uncertainty ±0.346%, enthalpy drop efficiency calculated with inlet conditions measured before stop valves, exhaust measured after balance gland leakage flow mix.

HP turbine wheel power - PGT test uncertainty ±2.508%, throttle flow corrected to design conditions (2412.2 psia, 1000°).


Throttle flow - PGT test uncertainty ±2.510%, corrected to design throttle conditions (2412.2 psia, 1000°).

IP turbine efficiency - Enthalpy drop efficiency calculated with inlet conditions measured before combined reheat valves and exhaust measured at LP-A turbine inlet (PGT), 14th stage extraction (Station).


Net turbine cycle heat rate - PGT test uncertainty ±2.554%, test heat rate was adjusted to PGT test values and corrected to design throttle & reheat conditions, design turbine back-pressure, and contract cycle using station pepse model.



Control Valve Position Effects on HP Efficiency

Control Valve Position Effects on HP Efficiency

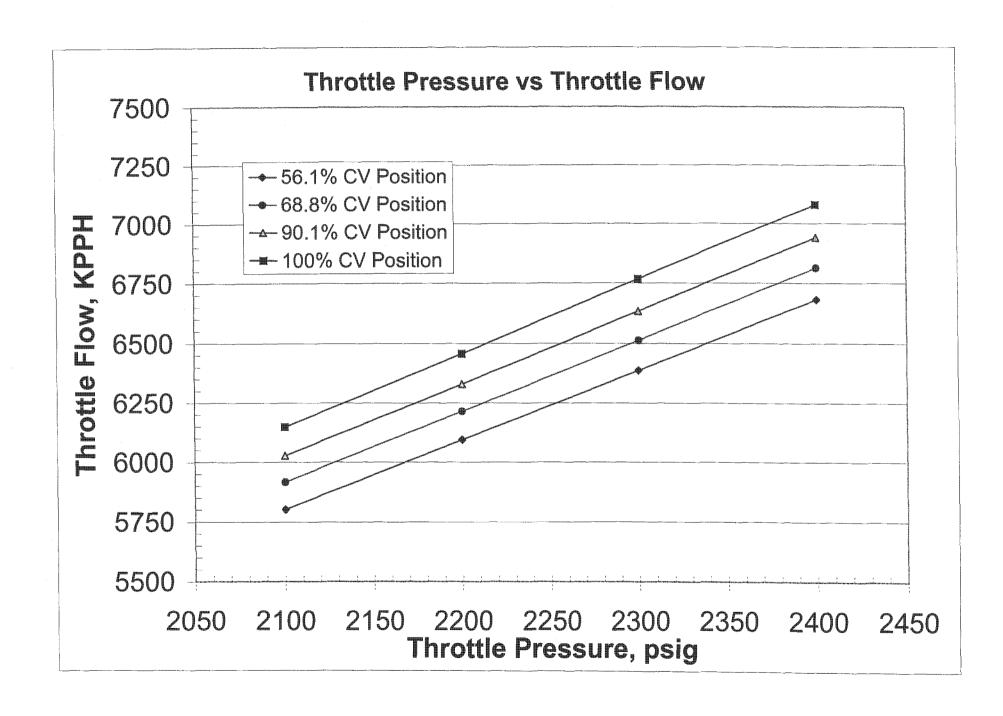
	Acceptance Tests		Confirmat	ion Tests		Pre-	
	Test 7	Test 8	Test 9	Test 10	Average	Gaurantee	<u>Upgrade</u>
HP Turbine Efficiency (%)	92.85	92.83	92.72	92.80	92.80	92.20	83.48
HP TurbineWheel Power (Mw)	302.8	304.5	300.4	304.4	303.01	299.0	259.4
Throttle Flow (kpph)	7,079	7,084	7,063	7,070	7,074	6,900	6,412
IP Turbine Efficiency (%)	92.01	92.06	92.17	91.05	91.82		91.23
Net Turbine Cycle Heat Rate (Btu/kwh)	7,701	7,636	7,671	7,676	7,671	7,683	7,807
Gross Power (Mw)	989.4	989.5	987.8	988.2	988.7	973.2	875.3

Notes:

All tests conducted at turbine throttle valves wide-open.

Tests 7 & 8 conducted by PGT with test instrumentation. Refer to the Thermal Peerformance Test Results on Intermountain Power Project (IPP) Unit #2 Turbine Cycle test report (April 2002) for additional information.

Tests 9, 10 & upgrade tested using station instrumentation corrected to test instruments readings.


HP turbine efficiency - PGT test uncertainty ±0.346%, enthalpy drop efficiency calculated with inlet conditions measured before stop valves, exhaust measured after balance gland leakage flow mix.

HP turbine wheel power - PGT test uncertainty ±2.508%, throttle flow corrected to design conditions (2412.2 psia, 1000°).

Throttle flow - PGT test uncertainty ±2.510%, corrected to design throttle conditions (2412.2 psia, 1000°).

IP turbine efficiency - Enthalpy drop efficiency calculated with inlet conditions measured before combined reheat valves and exhaust measured at LP-A turbine inlet (PGT), 14th stage extraction (Station).

Net turbine cycle heat rate - PGT test uncertainty ±2.554%, test heat rate was adjusted to PGT test values and corrected to design throttle & reheat conditions, design turbine back-pressure, and contract cycle using station pepse model.

HP Turbine Efficiency (%)	Acceptane Test 7 92.85	<u>Test 8</u> 92.83	Confirmat Test 9 92.72	ion Tests Test 10 92.80	Average 92.80	Gaurantee 92.20	Pre- Upgrade 83.48
HP TurbineWheel Power (Mw)	302.8	304.5	300.4	304.4	303.01	299.0	259.4
Throttle Flow (kpph)	7,079	7,084	7,063	7,070	7,074	6,900	6,412
IP Turbine Efficiency (%)	92.01	92.06	92.17	91.05	91.82		91.23
Net Turbine Cycle Heat Rate (Btu/kwh)	7,701	7,636	7,671	7,676	7,671	7,683	7,807
Gross Power (Mw)	989.4	989.5	987.8	988.2	988.7	973.2	875.3

Notes:

All tests conducted at turbine throttle valves wide-open.

Tests 7 & 8 conducted by PGT with test instrumentation. Refer to the Thermal Peerformance Test Results on Intermountain Power Project (IPP) Unit #2 Turbine Cycle test report (April 2002) for additional information.

Tests 9, 10 & upgrade tested using station instrumentation corrected to test instruments readings.

HP turbine efficiency - PGT test uncertainty ±0.346%, enthalpy drop efficiency calculated with inlet conditions measured before stop valves, exhaust measured after balance gland leakage flow mix.

HP turbine wheel power - PGT test uncertainty ±2.508%, throttle flow corrected to design conditions (2412.2 psia, 1000°).

Throttle flow - PGT test uncertainty ±2.510%, corrected to design throttle conditions (2412.2 psia, 1000°).

<u>IP turbine efficiency</u> - Enthalpy drop efficiency calculated with inlet conditions measured before combined reheat valves and exhaust measured at LP-A turbine inlet (PGT), 14th stage extraction (Station).

Net turbine cycle heat rate - PGT test uncertainty ±2.554%, test heat rate was adjusted to PGT test values and corrected to design throttle & reheat conditions, design turbine back-pressure, and contract cycle using station pepse model.

	Acceptance Tests		Confirmation Tests Test 9 Test 10		Average	Gaurentee	Pre-
HP Turbine Efficiency (%)	<u>Test 7</u> 92.85	<u>Test 8</u> 92.83	92.72	92.80	<u>Average</u> 92.80	Gaurantee 92.20	Upgrade 83.48
HP TurbineWheel Power (Mw)	302.8	304.5	300.4	304.4	303.01	299.0	259.4
Throttle Flow (kpph)	7,079	7,084	7,063	7,070	7,074	6,900	6,412
IP Turbine Efficiency (%)	92.01	92.06	92.17	91.05	91.82		91.23
Net Turbine Cycle Heat Rate (Btu/kwh)	7,701	7,636	7,671	7,676	7,671	7,683	7,807
Gross Power (Mw)	989.4	989.5	987.8	988.2	988.7	973.2	875.3

Notes:

All tests conducted at turbine throttle valves wide-open.

Tests 7 & 8 conducted by PGT with test instrumentation. Refer to the Thermal Peerformance Test Results on Intermountain Power Project (IPP) Unit #2 Turbine Cycle test report (April 2002) for additional information.

Tests 9, 10 & upgrade tested using station instrumentation corrected to test instruments readings.

HP turbine efficiency - PGT test uncertainty ±0.346%, enthalpy drop efficiency calculated with inlet conditions measured before stop valves, exhaust measured after balance gland leakage flow mix.

HP turbine wheel power - PGT test uncertainty ±2.508%, throttle flow corrected to design conditions (2412.2 psia, 1000°).

Throttle flow - PGT test uncertainty ±2.510%, corrected to design throttle conditions (2412.2 psia, 1000°).

IP turbine efficiency - Enthalpy drop efficiency calculated with inlet conditions measured before combined reheat valves and exhaust measured at LP-A turbine inlet (PGT), 14th stage extraction (Station).

Net turbine cycle heat rate - PGT test uncertainty ±2.554%, test heat rate was adjusted to PGT test values and corrected to design throttle & reheat conditions, design turbine back-pressure, and contract cycle using station pepse model.

	Acceptance Tests		Confirmation Tests				Pre-
	Test 7	Test 8	Test 9	Test 10	Average	Gaurantee	<u>Upgrade</u>
HP Turbine Efficiency (%)	92.85	92.83	92.72	92.80	92.80	92.20	83.48
HP TurbineWheel Power (Mw)	302.8	304.5	300.4	304.4	303.01	299.0	259.4
Throttle Flow (kpph)	7,079	7,084	7,063	7,070	7,074	6,900	6,412
IP Turbine Efficiency (%)	92.01	92.06	92.17	91.05	91.82		91.23
Net Turbine Cycle Heat Rate (Btu/kwh)	7,701	7,636	7,671	7,676	7,671	7,683	7,807
Gross Power (Mw)	989.4	989.5	987.8	988.2	988.7	973.2	875.3

Notes:

All tests conducted at turbine throttle valves wide-open.

Tests 7 & 8 conducted by PGT with test instrumentation. Refer to the Thermal Peerformance Test Results on Intermountain Power Project (IPP) Unit #2 Turbine Cycle test report (April 2002) for additional information.

Tests 9, 10 & upgrade tested using station instrumentation corrected to test instruments readings.

HP turbine efficiency - PGT test uncertainty ±0.346%, enthalpy drop efficiency calculated with inlet conditions measured before stop valves, exhaust measured after balance gland leakage flow mix.

HP turbine wheel power - PGT test uncertainty ±2.508%, throttle flow corrected to design conditions (2412.2 psia, 1000°).

Throttle flow - PGT test uncertainty ±2.510%, corrected to design throttle conditions (2412.2 psia, 1000°).

IP turbine efficiency - Enthalpy drop efficiency calculated with inlet conditions measured before combined reheat valves and exhaust measured at LP-A turbine inlet (PGT), 14th stage extraction (Station).

Net turbine cycle heat rate - PGT test uncertainty ±2.554%, test heat rate was adjusted to PGT test values and corrected to design throttle & reheat conditions, design turbine back-pressure, and contract cycle using station pepse model.

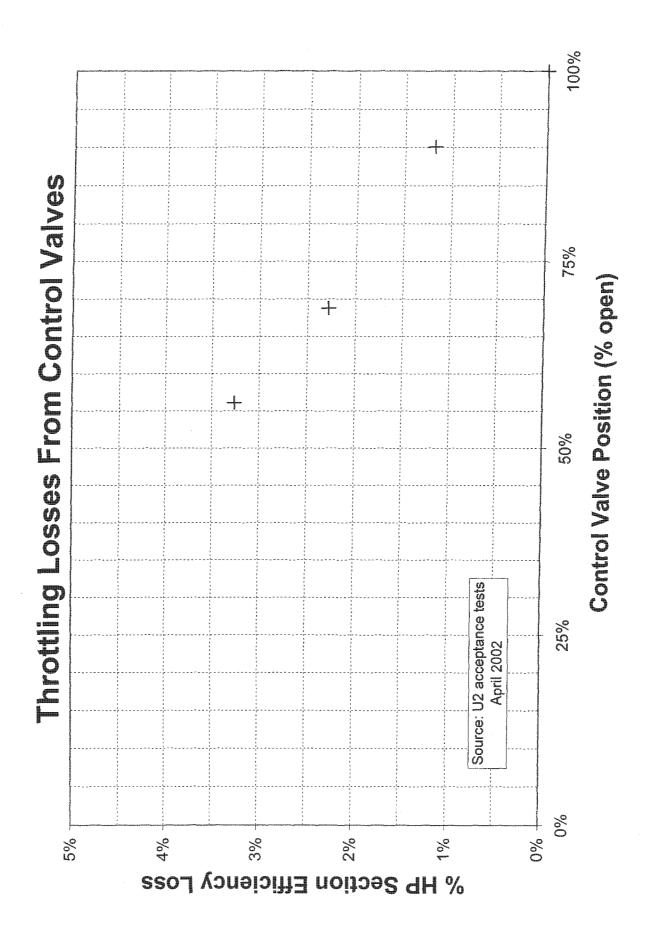
	Acceptance Tests		Confirmation Tests				Pre-
	Test 7	Test 8	Test 9	<u>Test 10</u>	<u>Average</u>	Gaurantee	<u>Upgrade</u>
HP Turbine Efficiency (%)	92.85	92.83	92.72	92.80	92.80	92.20	83.48
HP TurbineWheel Power (Mw)	302.8	304.5	300.4	304.4	303.01	299.0	259.4
Throttle Flow (kpph)	7,079	7,084	7,063	7,070	7,074	6,900	6,412
IP Turbine Efficiency (%)	92.01	92.06	92.17	91.05	91.82		91.23
Net Turbine Cycle Heat Rate (Btu/kwh)	7,701	7,636	7,671	7,676	7,671	7,683	7,807
Gross Power (Mw)	989.4	989.5	987.8	988.2	988.7	973.2	875.3

Notes:

All tests conducted at turbine throttle valves wide-open.

Tests 7 & 8 conducted by PGT with test instrumentation. Refer to the Thermal Peerformance Test Results on Intermountain Power Project (IPP) Unit #2 Turbine Cycle test report (April 2002) for additional information.

Tests 9, 10 & upgrade tested using station instrumentation corrected to test instruments readings.


HP turbine efficiency - PGT test uncertainty ±0.346%, enthalpy drop efficiency calculated with inlet conditions measured before stop valves, exhaust measured after balance gland leakage flow mix.

HP turbine wheel power - PGT test uncertainty ±2.508%, throttle flow corrected to design conditions (2412.2 psia, 1000°).

Throttle flow - PGT test uncertainty ±2.510%, corrected to design throttle conditions (2412.2 psia, 1000°).

<u>IP turbine efficiency</u> - Enthalpy drop efficiency calculated with inlet conditions measured before combined reheat valves and exhaust measured at LP-A turbine inlet (PGT), 14th stage extraction (Station).

Net turbine cycle heat rate - PGT test uncertainty ±2.554%, test heat rate was adjusted to PGT test values and corrected to design throttle & reheat conditions, design turbine back-pressure, and contract cycle using station pepse model.

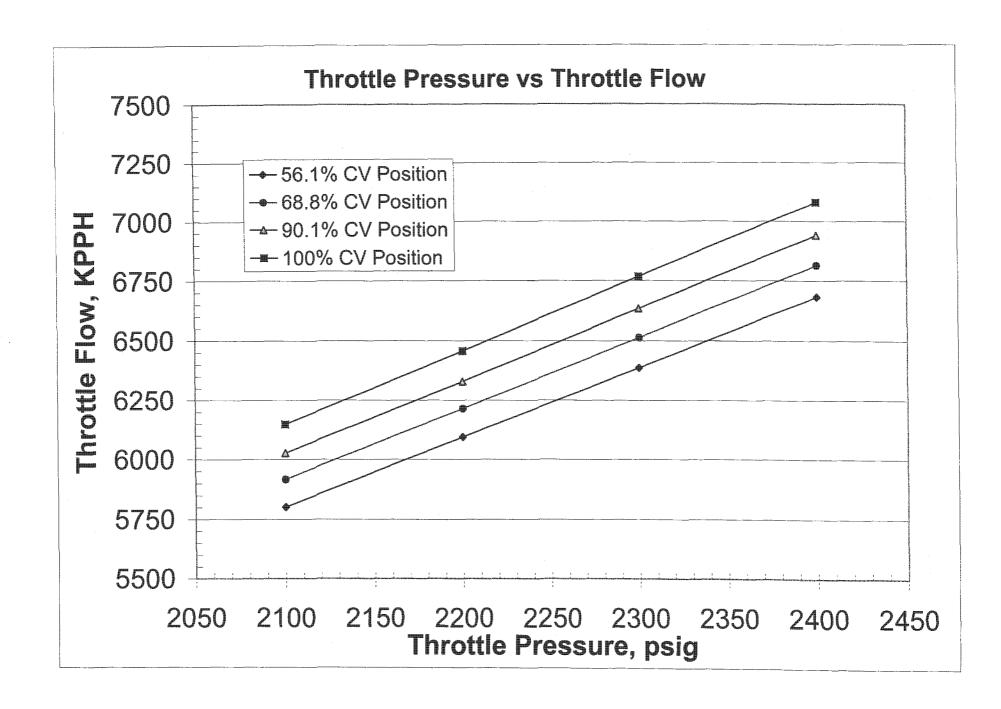
	Acceptance Tests		Confirmation Tests				Pre-
	Test 7	Test 8	Test 9	Test 10	<u>Average</u>	Gaurantee	<u>Upgrade</u>
HP Turbine Efficiency (%)	92.85	92.83	92.72	92.80	92.80	92.20	83.48
HP TurbineWheel Power (Mw)	302.8	304.5	300.4	304.4	303.01	299.0	259.4
Throttle Flow (kpph)	7,079	7,084	7,063	7,070	7,074	6,900	6,412
IP Turbine Efficiency (%)	92.01	92.06	92.17	91.05	91.82		91.23
Net Turbine Cycle Heat Rate (Btu/kwh)	7,701	7,636	7,671	7,676	7,671	7,683	7,807
Gross Power (Mw)	989.4	989.5	987.8	988.2	988.7	973.2	875.3

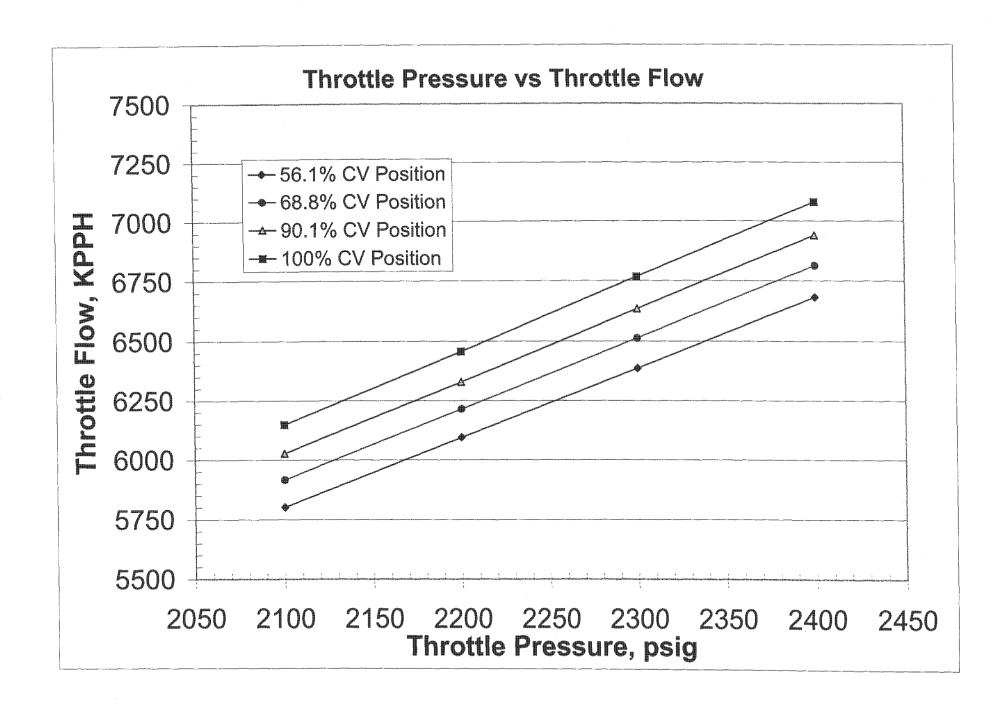
Notes:

All tests conducted at turbine throttle valves wide-open.

Tests 7 & 8 conducted by PGT with test instrumentation. Refer to the Thermal Peerformance Test Results on Intermountain Power Project (IPP) Unit #2 Turbine Cycle test report (April 2002) for additional information.

Tests 9, 10 & upgrade tested using station instrumentation corrected to test instruments readings.


HP turbine efficiency - PGT test uncertainty ±0.346%, enthalpy drop efficiency calculated with inlet conditions measured before stop valves, exhaust measured after balance gland leakage flow mix.


HP turbine wheel power - PGT test uncertainty ±2.508%, throttle flow corrected to design conditions (2412.2 psia, 1000°).

Throttle flow - PGT test uncertainty ±2.510%, corrected to design throttle conditions (2412.2 psia, 1000°).

<u>IP turbine efficiency</u> - Enthalpy drop efficiency calculated with inlet conditions measured before combined reheat valves and exhaust measured at LP-A turbine inlet (PGT), 14th stage extraction (Station).

Net turbine cycle heat rate - PGT test uncertainty ±2.554%, test heat rate was adjusted to PGT test values and corrected to design throttle & reheat conditions, design turbine back-pressure, and contract cycle using station pepse model.

	Acceptance Tests		Confirmation Tests				Pre-
	Test 7	Test 8	Test 9	Test 10	Average	Gaurantee	<u>Upgrade</u>
HP Turbine Efficiency (%)	92.85	92.83	92.72	92.80	92.80	92.20	83.48
HP TurbineWheel Power (Mw)	302.8	304.5	300.4	304.4	303.01	299.0	259.4
Throttle Flow (kpph)	7,079	7,084	7,063	7,070	7,074	6,900	6,412
IP Turbine Efficiency (%)	92.01	92.06	92.17	91.05	91.82		91.23
Net Turbine Cycle Heat Rate (Btu/kwh)	7,701	7,636	7,671	7,676	7,671	7,683	7,807
Gross Power (Mw)	989.4	989.5	987.8	988.2	988.7	973.2	875.3

Notes:

All tests conducted at turbine throttle valves wide-open.

Tests 7 & 8 conducted by PGT with test instrumentation. Refer to the Thermal Peerformance Test Results on Intermountain Power Project (IPP) Unit #2 Turbine Cycle test report (April 2002) for additional information.

Tests 9, 10 & upgrade tested using station instrumentation corrected to test instruments readings.

HP turbine efficiency - PGT test uncertainty ±0.346%, enthalpy drop efficiency calculated with inlet conditions measured before stop valves, exhaust measured after balance gland leakage flow mix.

HP turbine wheel power - PGT test uncertainty ±2.508%, throttle flow corrected to design conditions (2412.2 psia, 1000°).

Throttle flow - PGT test uncertainty ±2.510%, corrected to design throttle conditions (2412.2 psia, 1000°).

IP turbine efficiency - Enthalpy drop efficiency calculated with inlet conditions measured before combined reheat valves and exhaust measured at LP-A turbine inlet (PGT), 14th stage extraction (Station).

Net turbine cycle heat rate - PGT test uncertainty ±2.554%, test heat rate was adjusted to PGT test values and corrected to design throttle & reheat conditions, design turbine back-pressure, and contract cycle using station pepse model.

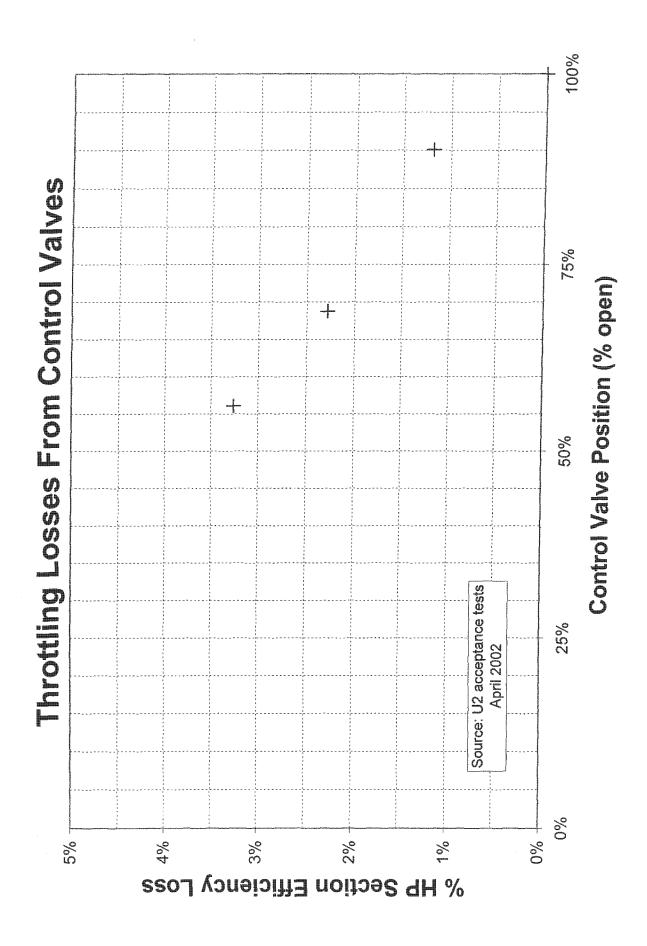
	Acceptan	ce Tests	Confirmation Test				Pre-
	Test 7	Test 8	Test 9	Test 10	Average	Gaurantee	<u>Upgrade</u>
HP Turbine Efficiency (%)	92.85	92.83	92.72	92.80	92.80	92.20	83.48
HP TurbineWheel Power (Mw)	302.8	304.5	300.4	304.4	303.01	299.0	259.4
Throttle Flow (kpph)	7,079	7,084	7,063	7,070	7,074	6,900	6,412
IP Turbine Efficiency (%)	92.01	92.06	92.17	91.05	91.82		91.23
Net Turbine Cycle Heat Rate (Btu/kwh)	7,701	7,636	7,671	7,676	7,671	7,683	7,807
Gross Power (Mw)	989.4	989.5	987.8	988.2	988.7	973.2	875.3

Notes:

All tests conducted at turbine throttle valves wide-open.

Tests 7 & 8 conducted by PGT with test instrumentation. Refer to the Thermal Peerformance Test Results on Intermountain Power Project (IPP) Unit #2 Turbine Cycle test report (April 2002) for additional information.

Tests 9, 10 & upgrade tested using station instrumentation corrected to test instruments readings.


HP turbine efficiency - PGT test uncertainty ±0.346%, enthalpy drop efficiency calculated with inlet conditions measured before stop valves, exhaust measured after balance gland leakage flow mix.

HP turbine wheel power - PGT test uncertainty ±2.508%, throttle flow corrected to design conditions (2412.2 psia, 1000°).

Throttle flow - PGT test uncertainty ±2.510%, corrected to design throttle conditions (2412.2 psia, 1000°).

IP turbine efficiency - Enthalpy drop efficiency calculated with inlet conditions measured before combined reheat valves and exhaust measured at LP-A turbine inlet (PGT), 14th stage extraction (Station).

Net turbine cycle heat rate - PGT test uncertainty ±2.554%, test heat rate was adjusted to PGT test values and corrected to design throttle & reheat conditions, design turbine back-pressure, and contract cycle using station pepse model.

	Acceptance Tests Test 7 Test 8		Confirmation Tests Test 9 Test 10		Average	Gaurantee	Pre- <u>Upgrade</u>
HP Turbine Efficiency (%)	92.85	92.83	92.72	92.80	92.80	92.20	83.48
HP TurbineWheel Power (Mw)	302.8	304.5	300.4	304.4	303.01	299.0	259.4
Throttle Flow (kpph)	7,079	7,084	7,063	7,070	7,074	6,900	6,412
IP Turbine Efficiency (%)	92.01	92.06	92.17	91.05	91.82		91.23
Net Turbine Cycle Heat Rate (Btu/kwh)	7,701	7,636	7,671	7,676	7,671	7,683	7,807
Gross Power (Mw)	989.4	989.5	987.8	988.2	988.7	973.2	875.3

Notes:

All tests conducted at turbine throttle valves wide-open.

Tests 7 & 8 conducted by PGT with test instrumentation. Refer to the Thermal Peerformance Test Results on Intermountain Power Project (IPP) Unit #2 Turbine Cycle test report (April 2002) for additional information.

Tests 9, 10 & upgrade tested using station instrumentation corrected to test instruments readings.

HP turbine efficiency - PGT test uncertainty ±0.346%, enthalpy drop efficiency calculated with inlet conditions measured before stop valves, exhaust measured after balance gland leakage flow mix.

HP turbine wheel power-PGT test uncertainty ±2.508%, throttle flow corrected to design conditions (2412.2 psia, 1000°).

Throttle flow - PGT test uncertainty ±2.510%, corrected to design throttle conditions (2412.2 psia, 1000°).

IP turbine efficiency - Enthalpy drop efficiency calculated with inlet conditions measured before combined reheat valves and exhaust measured at LP-A turbine inlet (PGT), 14th stage extraction (Station).

Net turbine cycle heat rate - PGT test uncertainty ±2.554%, test heat rate was adjusted to PGT test values and corrected to design throttle & reheat conditions, design turbine back-pressure, and contract cycle using station pepse model.

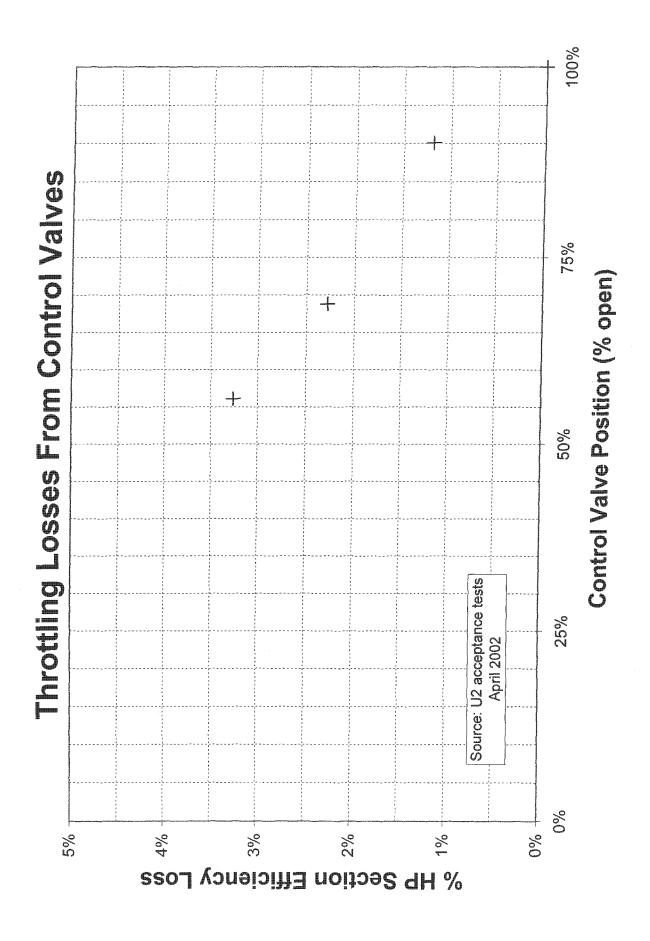
	Acceptance Tests		Confirmation Tests				Pre-
	Test 7	Test 8	Test 9	Test 10	Average	Gaurantee	<u>Upgrade</u>
HP Turbine Efficiency (%)	92.85	92.83	92.72	92.80	92.80	92.20	83.48
HP TurbineWheel Power (Mw)	302.8	304.5	300.4	304.4	303.01	299.0	259.4
Throttle Flow (kpph)	7,079	7,084	7,063	7,070	7,074	6,900	6,412
IP Turbine Efficiency (%)	92.01	92.06	92.17	91.05	91.82		91.23
Net Turbine Cycle Heat Rate (Btu/kwh)	7,701	7,636	7,671	7,676	7,671	7,683	7,807
Gross Power (Mw)	989.4	989.5	987.8	988.2	988.7	973.2	875.3

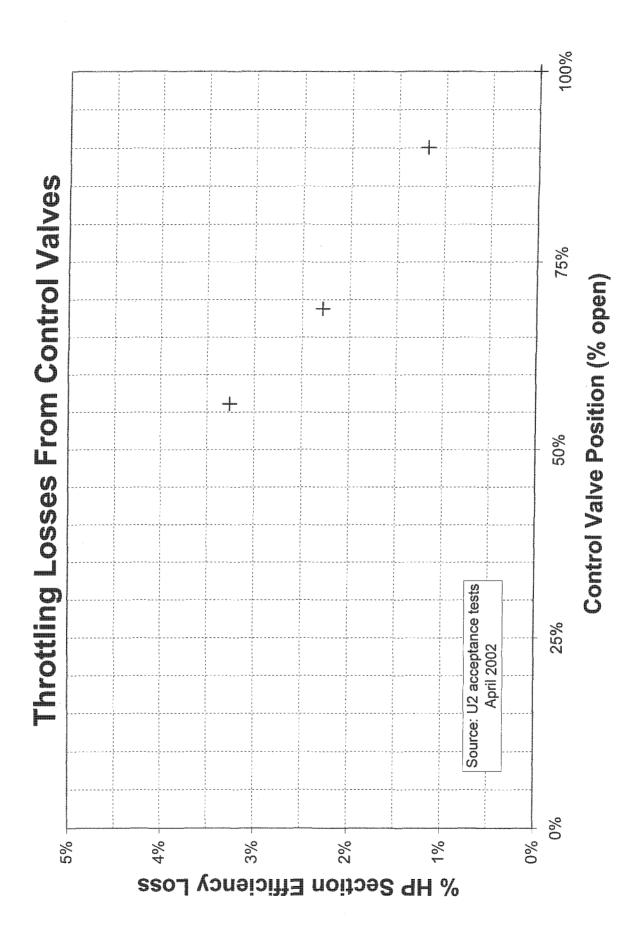
Notes:

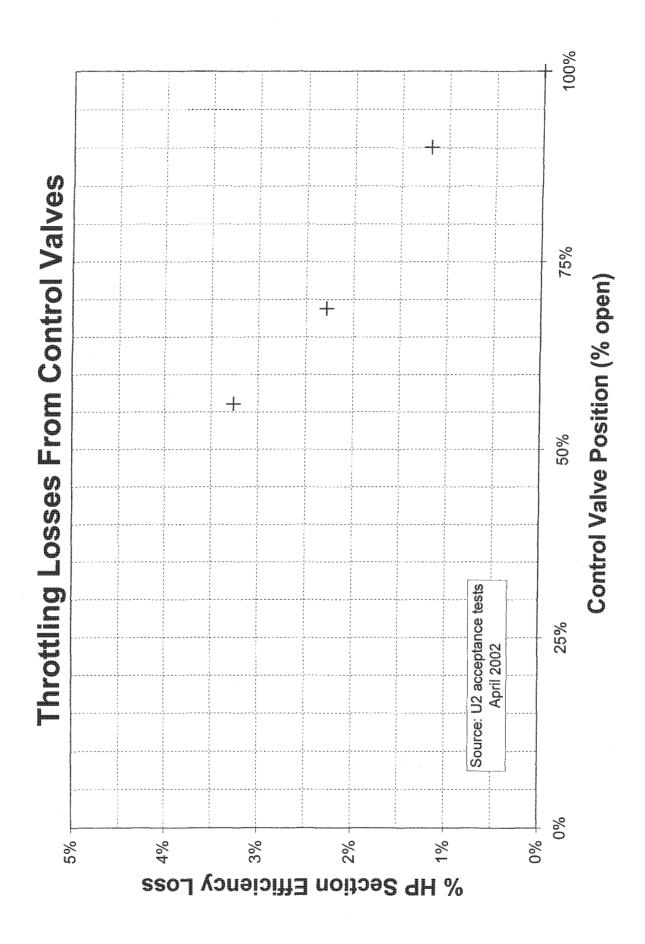
All tests conducted at turbine throttle valves wide-open.

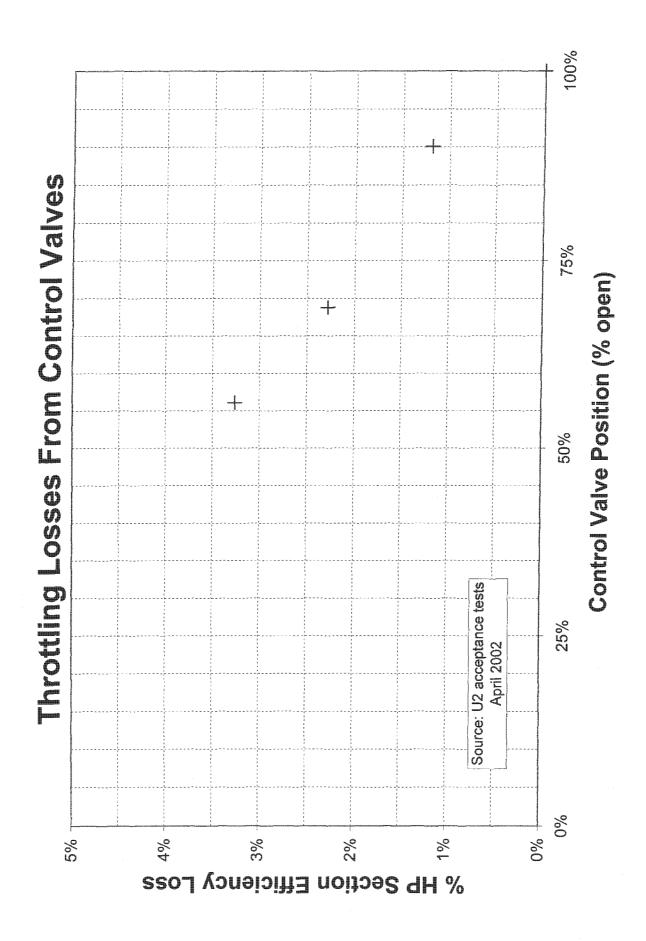
Tests 7 & 8 conducted by PGT with test instrumentation. Refer to the Thermal Peerformance Test Results on Intermountain Power Project (IPP) Unit #2 Turbine Cycle test report (April 2002) for additional information.

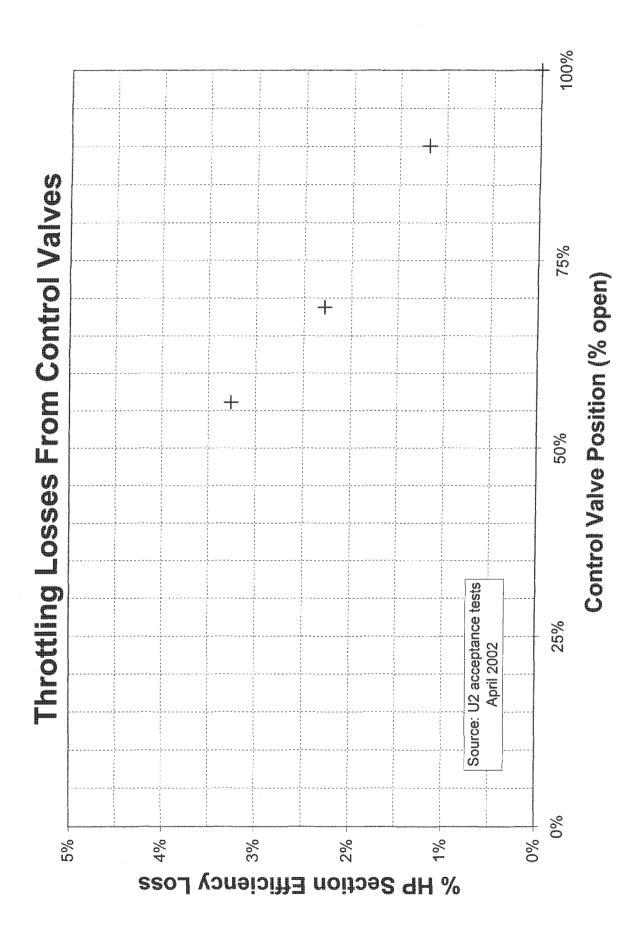
Tests 9, 10 & upgrade tested using station instrumentation corrected to test instruments readings.

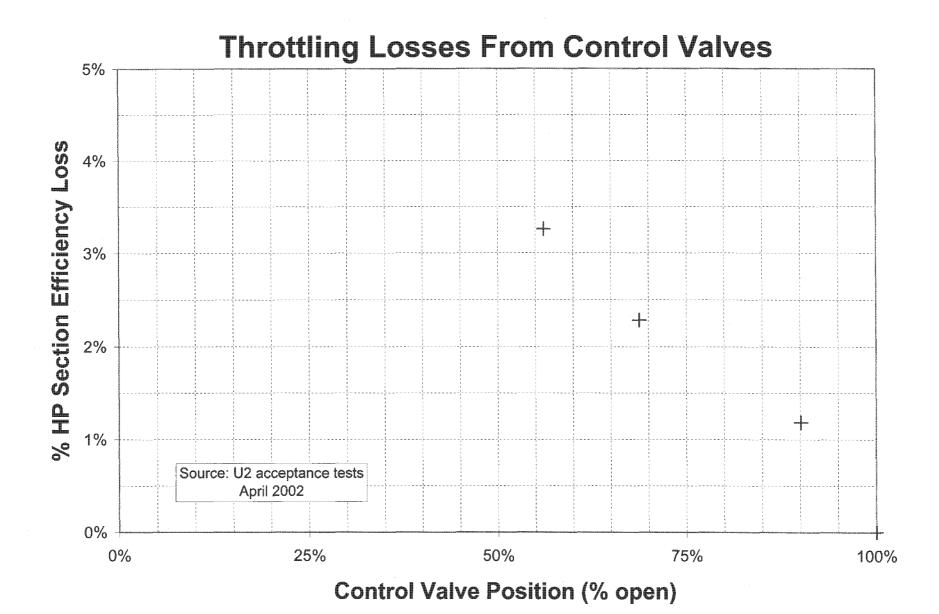

HP turbine efficiency - PGT test uncertainty ±0.346%, enthalpy drop efficiency calculated with inlet conditions measured before stop valves, exhaust measured after balance gland leakage flow mix.


HP turbine wheel power - PGT test uncertainty ±2.508%, throttle flow corrected to design conditions (2412.2 psia, 1000°).


Throttle flow - PGT test uncertainty ±2.510%, corrected to design throttle conditions (2412.2 psia, 1000°).


IP turbine efficiency - Enthalpy drop efficiency calculated with inlet conditions measured before combined reheat valves and exhaust measured at LP-A turbine inlet (PGT), 14th stage extraction (Station).


Net turbine cycle heat rate - PGT test uncertainty ±2.554%, test heat rate was adjusted to PGT test values and corrected to design throttle & reheat conditions, design turbine back-pressure, and contract cycle using station pepse model.



	Acceptance Tests		Confirmation Tests				Pre-
	Test 7	Test 8	Test 9	Test 10	Average	<u>Gaurantee</u>	<u>Upgrade</u>
HP Turbine Efficiency (%)	92.85	92.83	92.72	92.80	92.80	92.20	83.48
HP TurbineWheel Power (Mw)	302.8	304.5	300.4	304.4	303.01	299.0	259.4
Throttle Flow (kpph)	7,079	7,084	7,063	7,070	7,074	6,900	6,412
IP Turbine Efficiency (%)	92.01	92.06	92.17	91.05	91.82		91.23
Net Turbine Cycle Heat Rate (Btu/kwh)	7,701	7,636	7,671	7,676	7,671	7,683	7,807
Gross Power (Mw)	989.4	989.5	987.8	988.2	988.7	973.2	875.3

Notes:

All tests conducted at turbine throttle valves wide-open.

Tests 7 & 8 conducted by PGT with test instrumentation. Refer to the Thermal Preformance Test Results on Intermountain Power Project (IPP) Unit #2 Turbine Cycle test report (April 2002) for additional information.

Tests 9, 10 & upgrade tested using station instrumentation corrected to test instruments readings.

HP turbine efficiency - PGT test uncertainty ±0.346%, enthalpy drop efficiency calculated with inlet conditions measured before stop valves, exhaust measured after balance gland leakage flow mix.

HP turbine wheel power - PGT test uncertainty ±2.508%, throttle flow corrected to design conditions (2412.2 psia, 1000°).

Throttle flow - PGT test uncertainty ±2.510%, corrected to design throttle conditions (2412.2 psia, 1000°).

IP turbine efficiency - Enthalpy drop efficiency calculated with inlet conditions measured before combined reheat valves and exhaust measured at LP-A turbine inlet (PGT), 14th stage extraction (Station).

Net turbine cycle heat rate - PGT test uncertainty ±2.554%, test heat rate was adjusted to PGT test values and corrected to design throttle & reheat conditions, design turbine back-pressure, and contract cycle using station pepse model.

Gross power - PGT test uncertainty ±0.459%, station measurement corrected to PGT test measurements and corrected to design throttle & reheat conditions, design turbine back-pressure, 6.9% reheat pressure drop, and contract cycle using station pepse model.

Bosed on PGT test Instr.

	Acceptance Tests		Confirmation Tests				Pre-
	Test 7	Test 8	Test 9	Test 10	Average	Gaurantee	<u>Upgrade</u>
HP Turbine Efficiency (%)	92.85	92.83	92.72	92.80	92.80	92.20	83.48
HP TurbineWheel Power (Mw)	302.8	304.5	300.4	304.4	303.01	299.0	259.4
Throttle Flow (kpph)	7,079	7,084	7,063	7,070	7,074	6,900	6,412
IP Turbine Efficiency (%)	92.01	92.06	92.17	91.05	91.82		91.23
Net Turbine Cycle Heat Rate (Btu/kwh)	7,701	7,636	7,671	7,676	7,671	7,683	7,807
Gross Power (Mw)	989.4	989.5	987.8	988.2	988.7	973.2	875.3

Notes:

All tests conducted at turbine throttle valves wide-open.

Tests 7 & 8 conducted by PGT with test instrumentation. Refer to the Thermal Peerformance Test Results on Intermountain Power Project (IPP) Unit #2 Turbine Cycle test report (April 2002) for additional information.

Tests 9, 10 & upgrade tested using station instrumentation corrected to test instruments readings.

HP turbine efficiency - PGT test uncertainty ±0.346%, enthalpy drop efficiency calculated with inlet conditions measured before stop valves, exhaust measured after balance gland leakage flow mix.

HP turbine wheel power - PGT test uncertainty ±2.508%, throttle flow corrected to design conditions (2412.2 psia, 1000°).

Throttle flow - PGT test uncertainty ±2.510%, corrected to design throttle conditions (2412.2 psia, 1000°).

IP turbine efficiency - Enthalpy drop efficiency calculated with inlet conditions measured before combined reheat valves and exhaust measured at LP-A turbine inlet (PGT), 14th stage extraction (Station).

Net turbine cycle heat rate - PGT test uncertainty ±2.554%, test heat rate was adjusted to PGT test values and corrected to design throttle & reheat conditions, design turbine back-pressure, and contract cycle using station pepse model.